Journal of Arid Land

Article Title

Performance of different drought indices for agriculture drought in the North China Plain


The Palmer drought severity index (PDSI), standardized precipitation index (SPI), and standardized precipitation evapotranspiration index (SPEI) are used worldwide for drought assessment and monitoring. However, substantial differences exist in the performance for agricultural drought among these indices and among regions. Here, we performed statistical assessments to compare the strengths of different drought indices for agricultural drought in the North China Plain. Small differences were detected in the comparative performances of SPI and SPEI that were smaller at the long-term scale than those at the short-term scale. The correlation between SPI/SPEI and PDSI considerably increased from 1- to 12-month lags, and a slight decreasing trend was exhibited during 12- and 24-month lags, indicating a 12-month scale in the PDSI, whereas the SPI was strongly correlated with the SPEI at 1- to 24-month lags. Interestingly, the correlation between the trend of temperature and the mean absolute error and its correlation coefficient both suggested stronger relationships between SPI and the SPEI in areas of rapid climate warming. In addition, the yield–drought correlations tended to be higher for the SPI and SPEI than that for the PDSI at the station scale, whereas small differences were detected between the SPI and SPEI in the performance on agricultural systems. However, large differences in the influence of drought conditions on the yields of winter wheat and summer maize were evident among various indices during the crop-growing season. Our findings suggested that multi-indices in drought monitoring are needed in order to acquire robust conclusions.

First Page


Last Page