•  
  •  
 
Journal of Arid Land

Article Title

Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment

Abstract

Windblown sand transport is a leading factor in the geophysical evolution of arid and semi-arid regions. The evolution speed is usually indicated by the sand transport rate that is a function of launch velocity of sand particle, whichhasbeen investigated by the experimental measurement and numerical simulation. However, the obtained results in literatures are inconsistent. Some researchers have discovered a relation between average launch velocity and wind shear velocity, while some other researchers have suggested that average launch velocity is independent of wind shear velocity. The inconsistence of launch velocity leads to a controversy in the scaling law of the sand transport rate in the windblown case. On the contrary, in subaqueous case, the scaling law of the sand transport rate has been widely accepted as a cubic function of fluid shear velocity. In order to explain the debates surrounding the windblown case and the difference between windblown and subaquatic cases, this study reinvestigates the scaling law of the vertical launch velocity of windblown transported sand particles by using a dimensional analysis in consideration of the compatibility of the characteristic time of sand particle motion and that of air flow. Then a wind tunnel experiment is conducted to confirm the revisited scaling law, where the sand particle motion pictures are recorded by a high-speed camera and then the launch velocity is solved by the particle tracking velocimetry. By incorporating the results of dimensional analysis and wind tunnel experiment, it can be concluded that, the ratio of saltonsnumber to reptonsnumberdetermines the scaling law of sand particle launch velocity and that of sand transport rate, and using this ratio is able to explain the discrepancies among the classical models of steady sand transport. Moreover, the resulting scaling law can explain the sand sieving phenomenon: a greater fraction of large grains is observed as the distance to the wind tunnel entrance becomes larger.

Keywords

windblown sand transport; scaling law; launch velocity; dimensional analysis; wind tunnel

First Page

664

Last Page

673

Share

COinS